

Harnessing Next-Generation Space Technologies for Coastal Resilience and Emergency Management

Dr Rajasekhar Meka

Linking Ocean and Coastal Information with Society

Coastal regions: frontline of climate change

Threats: sea-level rise, storms, flooding, erosion

Need for robust, real-time, scalable monitoring and early warning systems

Harnessing Next-Generation Space Technologies for Coastal Resilience and Emergency Management

Coastal zones, vital for economy, ecosystems, and communities, face rising climate and pollution risks.

Space technologies support:

- Real-time monitoring of floods, storms, erosion & oil spills
- Advanced mapping & modelling for coastal planning & blue carbon
- Rapid oil spill detection & response
- Reliable disaster communications in remote areas
- Data-driven, climate-resilient planning

AI & digital twins boost prediction, emergency response, and pollution control—offering powerful tools to protect vulnerable coasts and enable sustainable development.

The Challenge — Coastal Disasters and Why Speed Matters

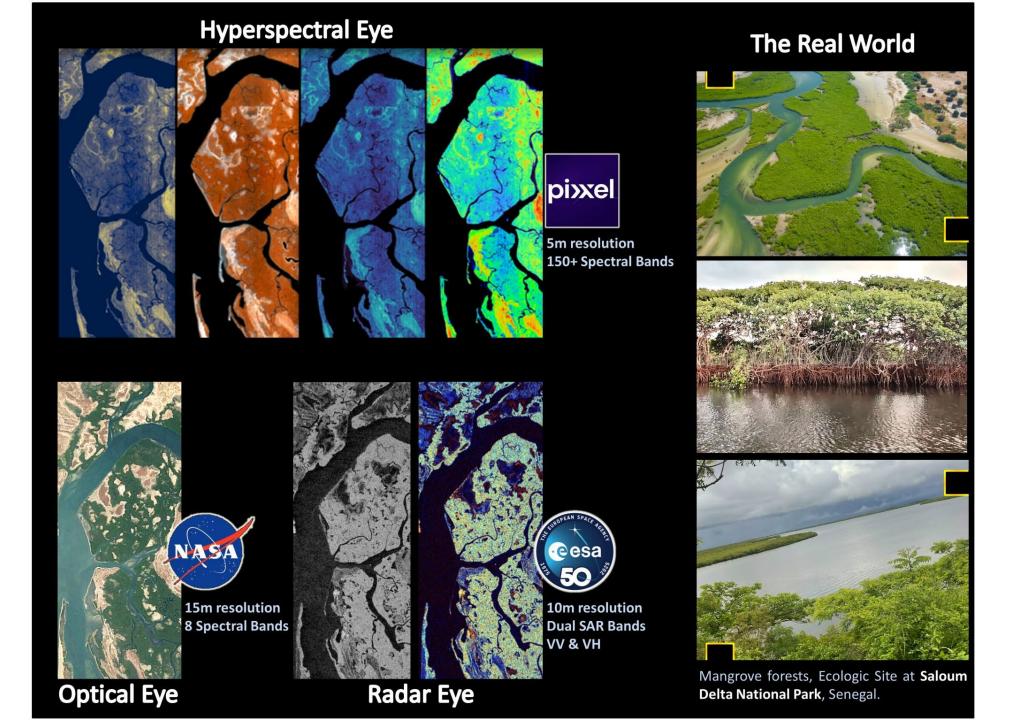
- Over 40% of Earth's population and vital economic hubs are along coasts
- Threats: Sea level rise, extreme storms, flooding, erosion growing with climate change
- Social, environmental, and economic losses are vast; rapid response is critical
- Traditional EO satellites face key gaps:
 - Data delivery latency: Hours or days from satellite to users
 - Infrequent updates: Revisit times of days to weeks may miss sudden events
 - -Single-sensor limitations: Gaps in seeing through clouds (optical), chemical/material data (SAR/hyperspectral)
- The world needs: Fast, multi-sensor, real-time data-to-action capabilities

The Role of Next-Generation Space-Based Earth Observation

Shift from traditional monitoring to high-resolution satellites

- Frequent revisit times, AI-driven analytics
- Supports informed decision-making and rapid response

Focus Technologies with Public and Private missions of constellation


- Synthetic Aperture Radar (SAR): All-weather, day-night imaging
- Hyperspectral Imaging: Detailed spectral insights for ecosystems
- Integrated with AI and data fusion for early warning

SAR Capabilities

- Flood mapping under clouds
- Shoreline change and erosion monitoring
- Ground deformation (subsidence, tectonics)
- Oil spills and disaster tracking

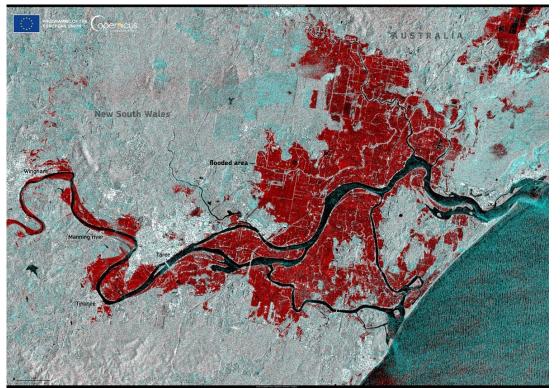
Hyperspectral Imaging Capabilities

- Water quality: chlorophyll, turbidity, pollution
- Coastal habitats: seagrass, mangroves, coral reefs
- Damage and material assessment

Extreme Flooding Strikes New South Wales - May 2025

Over three days in May 2025, intense and persistent rainfall led to catastrophic flooding across Smith Town, the Hunter, and Mid North Coast regions of New South Wales — Australia's most populous state.

Meteorologically, the deluge was attributed to a slow-moving coastal low-pressure system, trapped by a blocking high over the Tasman Sea—a setup that funneled tropical moisture inland and resulted in record-breaking rainfall.

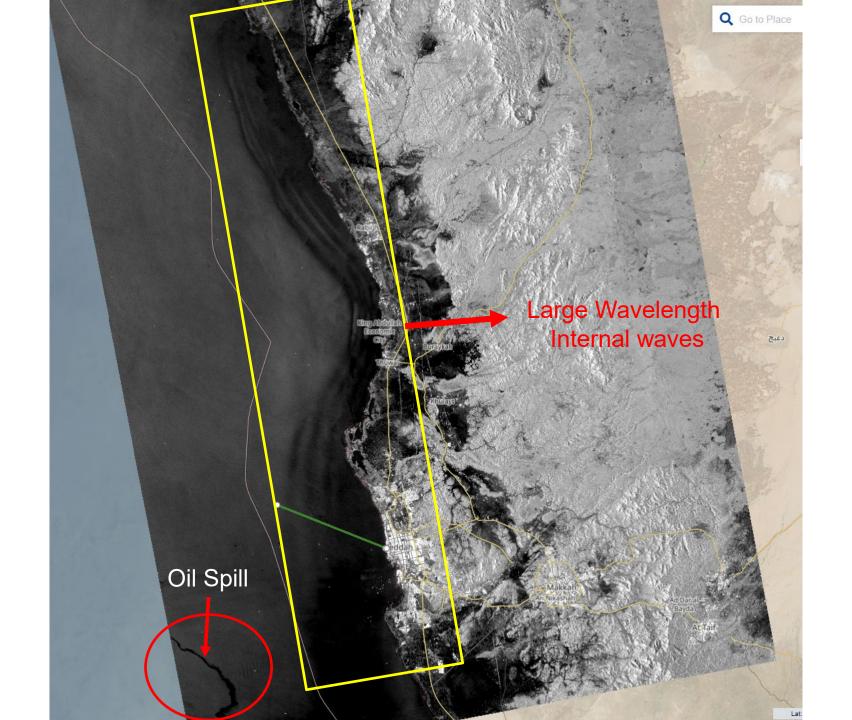

Some of the worst-hit areas including Smith Town, Taree, and Tinonee are clearly shown in this Copernicus Sentinel1 radar image (21 May 2025), compared with pre-flood conditions on 9 May. SAR (Synthetic Aperture Radar) allows us to "see through" clouds and monitor water extent even at night.

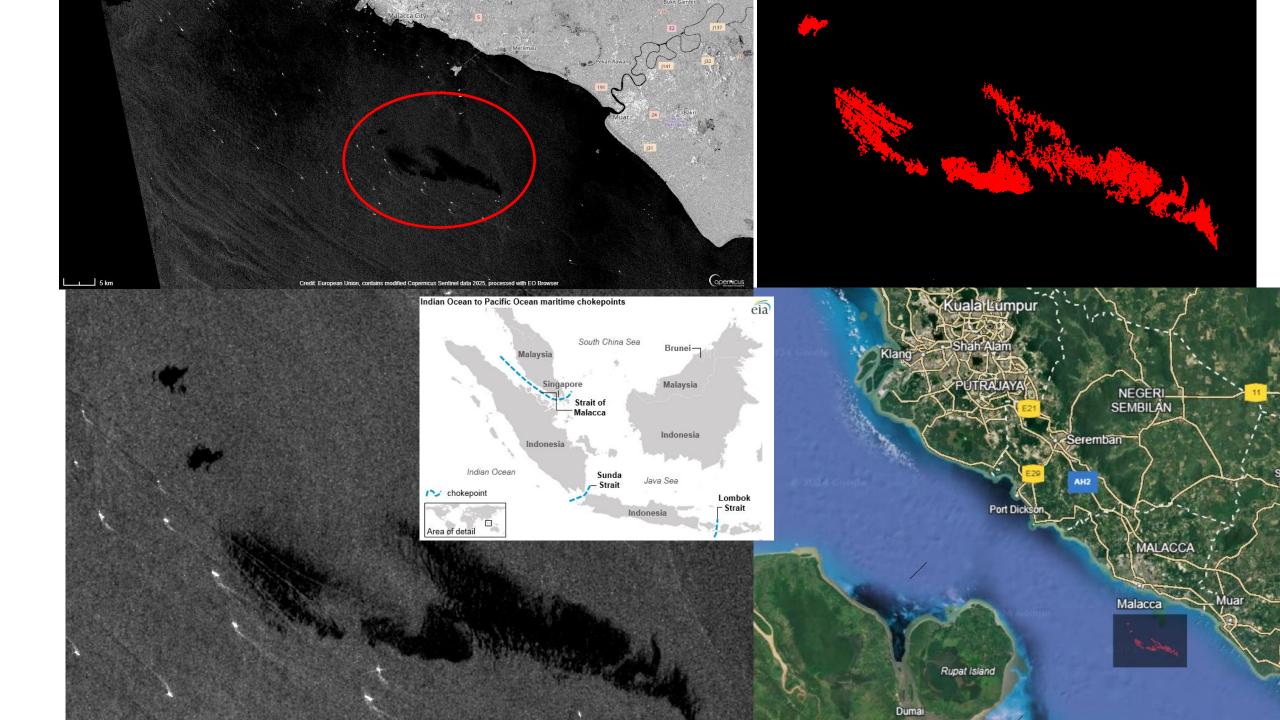
Open-access EO data from the CopernicusEU programme is playing a vital role in:

- ✓ Real-time flood mapping
- Emergency planning & evacuation
- **✓** Post-event damage assessment
- **✓** Supporting evidence-based decisions for recovery

Oil Spill Incidents

Tanker Accidents


The Strait has witnessed several significant oil spill incidents over the years, often resulting from tanker accidents or operational failures.


Long-Lasting Impacts

Vj gug'ur kmı'j cxg'hqpi /ncuvkpi 'gpxktqpo gpvcnko r cevu.'cpf 'engcpwr "ghhqtvu'ctg'htgs wgpvn{'unqy 'cpf 'kpuwhhekgpv'f wg'vq'vj g'eqo r ngzkv{"qh'vj g'kpekf gpvu0

SAR Technology

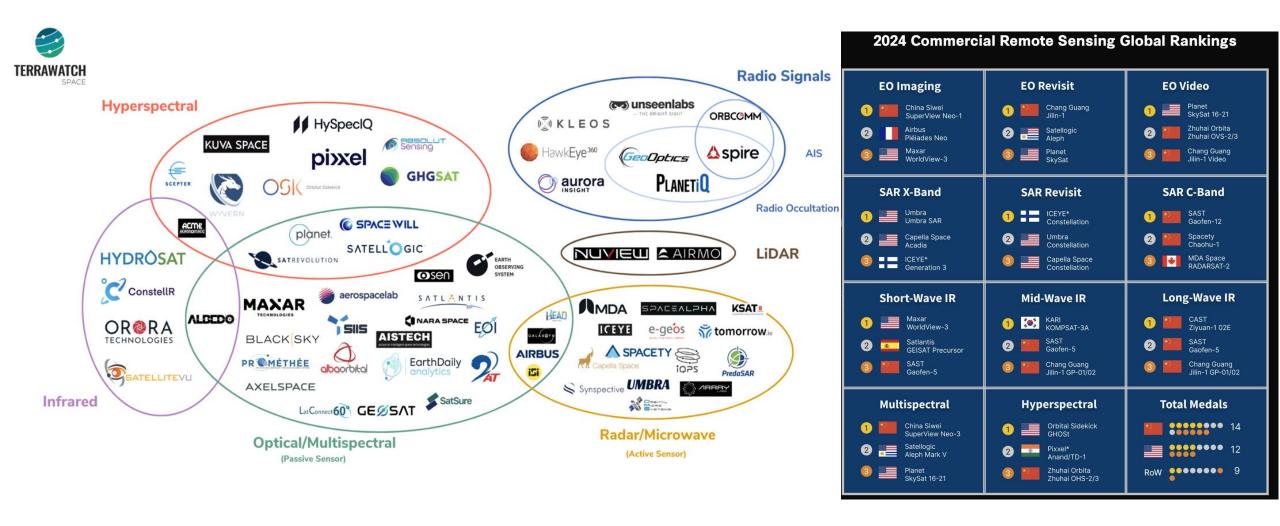
In recent months, notably in November and December 2024, prominent oil spills have been detected using Synthetic Aperture Radar (SAR) imagery.

Next-Generation Constellation Approach

Global monitoring using public & private constellations with SAR, hyperspectral, multispectral, and optical sensors

Advantages:

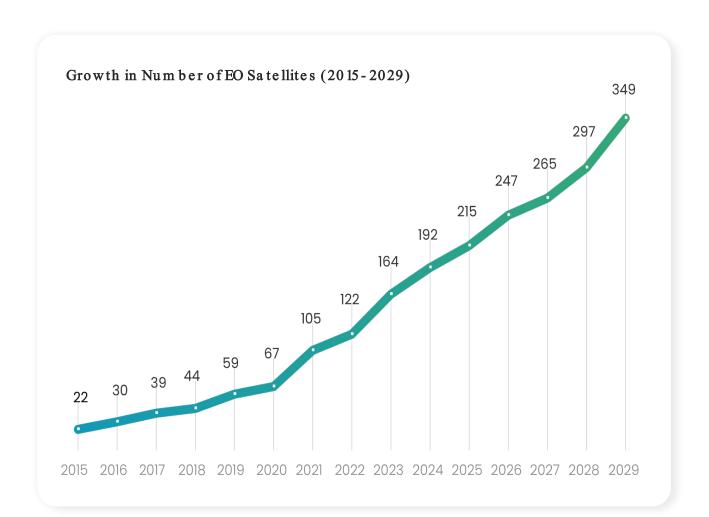
- Ultra-frequent revisits: Sub-hourly to daily coverage for evolving hazards
- All-weather sensing: SAR penetrates clouds, tracks floods and shoreline change night or day
- Chemical/material detection: Hyperspectral spots pollution/algae; multispectral tracks coral/mangroves
- Immediate disaster maps: AI/edge computing & in-space relay = analysis delivered in minutes
- - Partnerships: Combining public reliability & private innovation for global coverage and speed
- - Trends: AI for rapid event detection/prediction; IoT-enabled ground networks for local alerts


SAR Satellite Missions

Mission	Operator	Country	Band	Sat Count	Launch Yr	Notable Featu	Revisit Capab
Sentinel-1A/B/C	ESA (Copernic	EU	C-band	3+	2014+	Open data, di	6 days (globa
RADARSAT Cons	CSA	Canada	C-band	3	2019	Triple-sat, m	4 days exact
NISAR	NASA/ISRO	USA/India	L & S-band (d	1	2025	First dual-ba	12 days (glob
SAOCOM 1A/1B	CONAE	Argentina	L-band	2	2018/2020	Disaster mgmt	8 days (with
ICEYE Constel	ICEYE	Finland	X-band, Small	20+	2018+	First commerc	20 hours (equ
Capella Space	Capella Space	USA	X-band, Small	10+ (scaling	2020+	Sub-meter res	1-6 hours; <1
Synspective S	Synspective	Japan	X-band, 1-3 m	Aim: 30 (plan	2020+	Affordable, f	Daily (full d
Umbra	Umbra	USA	X-band	Growing	2021+	~0.25 m, rapi	4 times per d

Hyperspectral Satellite Missions

Mission	Operator	Country	Spectral Res	Launch Year	Satellites	Features	Revisit
PRISMA	ASI (Italy)	Italy	VNIR + SWIR,	2019	1	Hyperspectra	~29 days
EnMAP	DLR (German	Germany	VNIR + SWIR,	2022	1	Calibrated h	~27 days
HyslS	ISRO	India	VNIR, NIR, SWIR	2018	1	Agricultural	~24 days
GHOSt (Globa	Orbital Side	USA	VIS-SWIR, 8	2024 (start)	5+ (planned	Methane dete	Daily revisi
Pixxel Firef	Pixxel	India	VNIR-SWIR, ~5 m	2023-2025	3+ (planned 24)	Commercial c	Daily (plann
Kuva Space C	Kuva Space +	India	Hyperspectra	Planned 2025+	Constellatio	Planetary in	Multi-day re
HyspIRI (pla	NASA	USA	VSWIR + Ther	Future mission	1	Combined spe	~19 days vis
PhiSat-1 (Al	ESA	Europe	VNIR + Therm	2020	1	Al onboard p	Nanosat revi
CHIME (Coper	ESA	Europe	Hyperspectra	Planned ~2027	1 planned	Wide-swath h	Expected day
HISUI	JAXA	Japan	VNIR + SWIR,	2019	1	Hyperspectra	16 days approx.
PRISMA follo	ASI	Italy	Advanced hyp	Mid 2020s	Planned cons	Higher revis	Planned cons
LiDAR- and h	Multiple (NA	Multiple	Multi-modal	Planned future	Multiple pla	Fusion of hy	Variable, ai


EO Satellite Companies

EO Satellite Launches

Realistic Projections

Total# of EO satellites expected to launch in the next 5 years (2026-2029)

of countries with plans to launch an EO constellation (next 5 years)

of companies with existing or future plans for EO constellations (next 5 years)

.....

ץש ד ט

כלצשקש "תכנאיטכמת לא'ט האלפל קדטק א'טפֿכשט" קלשרא'שלע רתבמ, ל'תך שא'לש מקד נשרכ הארשת רפֿןת ושראישתך

EO-Powered Predictive Coastal Resilience

The Opportunity:

Harnessing EO satellites, ocean buoys, and climate data for predictive modeling and coastal scenario planning

Digital twins: Real-time virtual models of coastlines for simulating hazards, erosion, flooding, ecosystem shifts

Advantages

Early warnings: High-frequency EO enables anticipation of storms, floods, anomalies

Dynamic adaptation: Data-led guidance on fortification, restoration, retreat, redesign

Onboard EO Processing - Cutting Latency, Maximizing Impact

- In-Space Analysis
- > Satellites perform onboard processing, classifying risks directly in orbit
- Actionable alerts reach responders in minutes; saves bandwidth

Enhanced risk modeling: historic + real-time data = live forecasts

- Orbital Supercomputers & AI
 Orbital compute nodes process EO streams, training AI for detection & prediction
- Seamless, Secure, Multi-level Delivery
- > Secure networks deliver risk maps, forecasts, alerts to agencies & communities
- Integrated with IoT buoys, drones, national systems for collaborative response
- From Reactive to Predictive
- Anticipate-and-act resilience requires instant, trusted, actionable intelligence
- > Delivered where and when it's needed most

Policy & Future Directions

- Mainstream next-gen EO into disaster/climate action planning: from reactive to predictive resilience
- Invest in open-access data, capacity building, and cloud/AI analytics for developing regions
- Foster multi-sensor, multinational constellations and rapid public-private data sharing
- Continue research: better event AI, autonomous satellites, high-resolution coastal models